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Abstract: The use of Mathematical models to describe the transmission of infectious diseases has attracted a lot of interest
over the years and serious worldwide effort is accelerating the developments in the establishment of a global efforts for
combating pandemics of infectious diseases. Scientists from different fields have teamed up for rapid assessment of potentially
immediate situations. Toward this aim, mathematical modeling plays an important role in efforts that focus on predicting,
assessing, and controlling potential outbreaks. The recent outbreak of covid 19 pandemic had increased the curiosity for the
formulation of Mathematical models to describe and analyze the propagation of the disease. This paper focuses on the
modeling and analysis of an infectious diseases model using the extended Laplace Adomian Decomposition (LAD) method.
The method is used to obtain solutions in the form of infinite series. The result of the research with the aid of MAPLE
indicates that physical contact with an infected person is the major cause of the propagation of any infectious disease in the
absence of pharmaceutical and non pharmaceutical safety protocols such as the proper use of face mask, physical and social
distancing. It becomes vital to subject the infected persons in isolation and adhere to the necessary protocols by relevance
agencies and this will significantly flattened the curve of the spread of the infectious disease.
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outbreak motivated Shil ef al. [4, 5] to derived the intrinsic
exponential growth rate for each day. On their part, Deguen
et al. [6] analyzed the periodical pattern of chicken pox
epidemic in France. The analysis was done by fitting SEIR
model with a periodic contact rate function to weekly
chicken pox incidence. Wang et al [7] adapted the SEIR
model with a time dependant transmission rate (contact per
infectious person per day) for describing the SARS outbreak
in Beijing city. Kongnuy et al. [8] described a simple model
for transmission of mosquito borne disease. In the model, the
interaction between the infected mosquitoes and the
uninfected humans will produce new infected humans.
Constantenos et al [9], developed an agent-based model to
investigate the epidemic dynamics of Ebola virus disease
(EVD) in Liberia and Sierra Leo developed an agent-based
model to investigate the epidemic dynamics of Ebola virus
disease (EVD) in Liberia and Sierra Leon developed an
agent-based model to investigate the epidemic dynamics of
Ebola virus disease (EVD) in Liberia and Sierra Leon

1. Introduction

Wu etal [1] modeling of infectious diseases is a potent
instrument that has been used and is still been used to study
the mechanisms by which diseases spread, to predict the
future course of an outbreak and to evaluate strategies to
control the epidemic. In other words, Rui-Zing et al. [2]
opined that infectious diseases such as SARS and HIN1 can
significantly impact people’s lives and cause severe social
and economic damages. Recent outbreaks have stressed the
urgency of effective research on the dynamics of infectious
disease spread. However, it is difficult to predict when and
where outbreaks may emerge and how infectious diseases
spread because many factors affect their transmission, and
some of them may be unknown.

Several researchers had carried out studies on infectious
diseases. Gurav et al. [3] reported about the influenza
A/HINT 2009 (Swine flu) outbreak in a residential school in
Panchgani, Maharashtra. The epidemiologic data for the



31 Bazuaye Frank Etin-Osa and Ezeora Jeremiah: Modelling and Solution of Infectious Diseases Using the
Extended Laplace Adomian Decomposition Techniques

Ruan et al. [10] used the differential equations that
described disease dynamics to analyze malaria and applied
by Massad et al. [11] for description of Dengue transmission.
The Laplace Adomian Decomposition Method (LADM)
introduced by Adomian [12] provides an efficient method for
finding the numerical solution of a system of differential
equations models.

This method has been used in literature to solve
differential and integral equations. It has been shown that the
method significantly reduce the size of computational efforts
while still retaining its accuracy, Adomian, Somali, Adomian,
Wazwa [13-16]. The ADM decomposes a solution into an
infinite series which converges rapidly to the exact solution.

2. Materials and Methods

In this section, the Mathematical model is developed. In
order to successfully model this pandemic, the population
was divided into four sectors They are: the susceptible,
infected and the recovered from the disease.

dzif) B-0S()I(H)-1S(1),
@—esa)l(r) Y1) =11() @
A =i

With the initial conditions
S§0)=8,=20,1(0)=1,=20,R(0)=R, 20, (2)

Where the parameters are defined as follows

S is the susceptible population

I is the infected population

R is the recovered population from the pandemic

@ is the mean transmission rate of the infectious disease
 is the mean recovery rate

T represents the mortality rate per capital
B Shows the birth rate per unit time
Under the initial conditions (2) all the solution S(¢).,7(¢)

and R(¢) of system (1) remain nonnegative for all positive t

2.1. The Extended Laplace-Adomian Decomposition
Method

The numerical solution of the proposed mode is obtained by
the Adomian Decomposition method. The Laplace
transformation is used to convert the system of differential
equations into a system of algebraic equations. Then, the
algebraic equations are used to obtain the required solution in
form of series. We will discuss the procedure for solving model
(1) with given initial conditions (2). Applying Laplace transform
on both sides of model (1), we obtain the following system:

e{%} =({B-6S0)1(t)~1S(1)},

e{M}=z{HS(t)I(t)—W(’)‘”(t)}’ ®

{2

Equations (3) result
st{S@)} =Sy = { B-0S@t)I(1)-TS(1)},
st{1(0)} = 1(0) = {OS () I (1) ~wI(t)~TI (1)}, 4)
st{R(1)} = R(0) = {1(1)}

Simplifying (4) by applying the initial conditions (2)
results

s(o) {B 8S(H)I(t) - rS(z)}]

s} = :
851 1(6)-11
{10} = 1(0) { 1) Yl// -t (t)}] )
R(O) {wl(t)}
o) = B A1

Now, assume that the solutions S(¢).,/(¢) and R(¢) are in
the form of
infinite series given by

S(t) = Zs,, ®

=0

1))=Y 1,) (6)
n=0

R(t)= ) R, (1)

=0
Decomposing the nonlinear term S(¢)I(¢) as
SI(0) :ZM,(z)} ()
i=0

Respectively.
Where each M, 5 is the Adomian polynomials defined as

,,——,M—,{ZAZSA@)ZA%U)‘ o ®)

=0
Expanding (7) yields the following polynomials
My =85(0)1,(1)
_d 0 1 0 1
My = [ AS O+ SO L O+ AR 0)] - ©)

%[(So (0 + A8, ()L ()+ AL ()],
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Expanding (9) yields
Lyt + A5G @+ AS 0+ 2S00 1)
2= SyOLO+S, 010
Similarly,

Zy, =28, ()1, (1) +28,(0)1, () + 25, ()1 (?) (11
Substituting (6) into (5) results in

(3B=8>» M, (t)-T) S, (1)
S(0)+[{ ;” ;”}

Hso}==—= ]
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7 n 7
]

v

(12)

st{1(0)} = @ +[

st{R(0)} = REO) +/

{wZzﬂ(r)}
7
SV

Comparing the two sides of equation (12) results the
following iterative algorithm

E{B - HZ”:M,](t) - ris,i(t)}
0) o n n

sw}= S (S 7 ]
E{HZM”U) ONACK TZIH(t)}
st{1(0) = ! (SO) 7 S”y 7 ]

{wZI,,m}
U
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z{so}z%

B 6
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B_6
{S,} :s_V_s_VZ{MI} _SLVZ{Sl} (13)
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B 6
é{sdﬂ}zs—y—s—ye{Mo} S—é{Sd}

Similarly,

¥

{
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2.2. Application of The Extended Laplace-Adomian

Decomposition Method

In this session, the extended Laplace Decomposition

Method is applied to the infectious diseases model

g{Ro} = %

v} =L o{1,}

R} =z”_ye{11} 0
o} =4 n}

Ry} =2 0(1,)

Evaluating the inverse Laplace transform of (13), (14) and

(15) and considering the first few terms yields

tY Y tY
= B- oM, -1 So (16)
F(y+1) F(y+1) F(y+1)

With the following parameters defined as follows

Sy

Sy =N,
Iy =N,
Ry =N;
My =Syl

(17)

Substituting
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Similarly, S, and S;are
y v v 18
LA LV : (18)
F(y+1) F(y+1) F(y+1)

Sy

14 y
Y IVH([N2+t ONN, W+ NZJNI

_ B F(y+) T+l
) I'(y+1)( F(y+1)

S5

_ty( B _{ONN, PN, J

v 4 v F(y+l) TI(y+l) TI(y+1

vy = g N, -— N (y+) T+ T(y+D)
Fy+h  Ty+Dh F(y+1) F(y+1)

IVH[2N2( B ! (ti((N2+’y(4”N1Nz)N _ty(l/f+T)Nz]N1
1

) M+ T(y+D) Fy+h) 7 T(y+D
T T(y+D) F(y+1)

3
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2

B- 6NN, - '
F(y+)  T(y+D F(y+1 F(y+1

J+2(N2 +

M[(Nz JONN, Y@ +DN, JNI ot

B_
| Fy+)  F(y+) ry+h" venN,
F(y+1) F(y+1) Fy+D)  F(y+1)

N -

ty9N1N2_ty((//+T)N2)N)_ 1 v tr B 1 e N+t"6’N1N2_t"(z,//+r)N2
! C(y+1) T(y+1) 20 r(y+)) F(y+1)

r(y+1) F(y+1) r(y+1)
F(y+1

4 B_tVBNlNz_ t'N, _ B /6NN, 1N,
2 F(y+1) My+H TI(y+D F(y+l) T (y+1) T(y+D
F(y+D

For the infected class

N YON\N, '@ +1)N,
F(y+1) F(y+1)

(19)
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F(y+Dh F(y+l) T(y+D) F(y+1) F(y+1)

¥ B tYONN, YN,
) e R | R G A MR
2ry+n r+n i+ F(y+1)

o +ty6’N1N2_ty(¢/+T)N2 B V6NN, 1N,
PT(y+D F(y+1) Fy+h) Ty +) T(y+D

2(N2 +
F(y+1)

fy+h T+D ry+D T+ T+
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Finally, for the recovered class R(t)
v
My+1
y
tJ’(N2 LONN, (+1)N, J

N,

F(y+1) F(y+1)
Fr(y+1

14
Ry= Ny +— [ty[Nz - (l‘yg((Nz JONN, (@HT)N, JM]]
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3. Numerical Method and Results

In this session, the efficiency of the proposed method is demonstrated. Given
Sy=N,=L1,=N, =0.2,R, =N;=05,B=100,7=0.01,=0.9,
¢ =0.02,

The proposed Laplace Adomian Decomposition method for analyzing the Covid 19 Mathematical Model provides us with a
numerical solution in the form of an infinite series

Y tY o 4
= + - —
S(m) =N, r(y+1)B ro+D) M, Tl_(y+1) Sz} (20)

y=0.1
S(r) =105.137006:°! —0.9460233055 (r‘“ (207.6836496t°'1 (0.2 +0.18289783917%! ) +0.4+1.892046611¢%! ))

(0.2+20.95756962:°" ) + 42.04548024:"! ~0.3784093222 ((r‘“ ) (02+2095756962¢"" )) ~0.43674052601"2) )

-0.010511370067°! (1051.1 137006¢*! - 0.9460233055((;0-1 ) (0.2 + 20.95756962t0'1) -11.03585236:°2
y=0.2
S(1) =1089.124421:%% - 0.98021 19790(:0-2 (207.6836496t°'1 (0.2 + 0.1828978391t°‘1) +0.4+1.892046611/%! ))
(02+20.95756962:"") +42.045480241"' ~0.3784093222 ((10-1 ) (02+20.95756962¢" )) ~0.43674052601"2) )
-0.01089124421°2 (105 1.37006:%" —0.9460233055 ((r‘“ ) 0.2+20.95756962"! )) -1 1.03585236t°‘2)
y=03
S(u) =1114.242509:°3 -1.00281 8258(t0‘3 (207.6836496t0'1 (0.2 + 0.182897839110'1) +0.4+1.892046611/°! ))
(02+20.95756962:"") +42.045480241"' - 03784093222 ((10-1 ) (0.2+20.95756962¢" )) ~0.43674052601"2) )
-0.01114242509¢** (1051.137006t0'1 —0.9460233055((t°‘1 ) 0.2 +20.95756962:"! )) -1 1.03585236t°‘2)
y=04
S(v) =1127.060498:** —1.01435448(t°'4 (207.6836496t°'1 (0.2 +0.18289783917%! ) +0.4+1.892046611¢"! ))
(0242095756962 ) + 42.04548024¢" - 03784093222 ((r‘“ )(0-2+20.95756962¢" )) ~0.4367405260°2 ) )
-0.01127060498"4 (1051.137006t°'1 -0.9460233055 ((;0-1 )0.2 +20.95756962¢"! )) -1 1.03585236t°'2)
y=0.5
S(w) =1128.379167¢"° —1.015541250(10-5 (207.6836496t°'1 (0.2 +0.18289783917%! ) +0.4+1.892046611*! ))
(0242095756962 ) + 42.04548024¢" - 03784093222 ((r‘“ )(02+20.95756962¢" )) ~0.4367405260°2 ) )

-0.01128379167¢%3 (105.137006t°-1 -0.9460233055 ((;0-1 )0.2 +20.95756962¢°! )) -1 1.03585236t°'2)

The plot of S(¢) for y=0.1=S,;y=02=S,;y=03=8,;y=04=5;y=05=85,
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Figure 1. Plot of numerical solution of susceptible class S(t) corresponding to different timein a day.
For the infected group;

YoM, YW+,
F(y+1) F(y+1)

I(H)=N, +

y=0.1

I(r) = 0.2+0.94023305:"" (42.0454804t0‘1 -29.7170946:" + 207.95694(0.2 +0.05886367:"" )to'l +0.4)

~0.03153411018:™" (0.2+0.9460233055¢"' ) (20.85455819:"" +0.2) -0.03153411018

(0.2 +0.0588863672341""! ) t‘“)
y=02
I(s)=0.2+0.9802119790¢°2 (42.0454804t°'1 -29.7170946¢%2 + 207.95694(0.2 +0.05886367¢%! )to'l +0.4)
-0.032673732631"2 (0.2 +0.9460233055¢*! (20.85455819:0-1 + 0.2) -0.03153411018
(0.2+0.05886367234"' )

y=03

I(u) =0.2+1.002818258:"> (42.0454804t°'1 -29.7170946¢%2 + 207.95694(0.2 +0.05886367¢"! )to'l +0.4)
-0.0334227275261"* (0.2 +0.9460233055¢"! (20.85455819t°‘1 + 0.2) -0.03153411018

(0.2+0.058863672347"' )
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y=04

1(v) = 0.2 +1.014354448:*4 (42.0454804t°'1 -29.7170946¢%2 + 207.95694(0.2 +0.05886367¢"! )t‘“ +0.4)
-0.033811814947%4 (0.2 +0.9460233055:"! (20.85455819t°‘1 + 0.2) -0.03153411018
(0.2+0.058863672347"' )

y=0.5
I(w) =0.2+1.015541250/%° (42.0454804t°‘1 -29.7170946:°2 + 207.95694(0.2 + 0.05886367t0‘1)to‘1 +0.4)

-0.0338513750¢% (0.2 +0.9460233055:%! (20.85455819t°'1 + 0.2) -0.03153411018

(02+0.05886367234¢' )1

The plotof I(¢) for y=0.1=1,;y=02=1;y=03=1[,;y=04=[;y=05=1[,
Is shown the figure 2 below

400 1

I(2)
200 -

100

0 10 20 30
Time indays

sy () ] e () T 03+ = Qg =5

Figure 2. Plot of numerical solution of infected class I(t) corresponding to different timein a days.

2
Finally, the analysis of the recovered class is given below 0-4 + 0.044057"

oy
RO=M 0 ]2}

y=0.1
R(r) =0.5+0.02102274012¢""! (0.2 +0.9460233055¢"" (20.85455819"' +0.2)

~0.03153411018 (0.2 +0.05886367234¢"! )t‘“ )
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y=0.2

R(s) =0.5+0.02178248842¢" (0.2 +0.9460233055¢"" (20.85455819¢"" +0.2)

~0.03153411018 (0.2 +0.05886367234¢"! )t‘“ )

y=0.3

R(u) =0.5+0.02228485017¢"° (0.2 +0.9460233055:"" (20.85455819¢"" +0.2)

~0.03153411018 (0.2 +0.05886367234¢"! )t‘“)

y=04

R(v) =0.5+0.02254120996¢"* (0.2 +0.9460233055¢"" (20.85455819"" +0.2)

~0.03153411018 (0.2 +0.05886367234¢"! )t‘“ )

y=0.5

R(w) =0.5+0.02256758334¢" (0.2 +0.9460233055¢"" (20.85455819"" +0.2)

~0.0315341 1018(0.2 +0.058863672341"! )to‘l)

R(?) °7

Figure 3. Plot of numerical solution of Recovered class R(t) corresponding to different timein thirtydays.

4. Conclusion

In this paper, the framework for modeling and numerical
analysis of infectious diseases was carried out using the
extended Laplace Adomian Decomposition method for its
analysis. Three classes were presented in the model. Namely:
the susceptible class S, the infected population / and the
recovered population from the infection R. From the
graphical results it is clear that the result obtained by using

LADM is very efficient. It also shows that the method used
can predict the behavior of the different variables accurately
for the domain under investigation. It also

Indicates that the efficiency of this method can be
increased by increasing the terms.

The dynamics of various domains have been indicated in
Figure 1, Figure 2, and Figure 3, respectively.

The result also shows that the susceptible class increases
as the value of y increases. This is also applicable to the
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other classes considered in this paper.

References

(1]

[7]

Wu J. T, Leung K, Leung GM (2020). Now casting and
forecasting the potential domestic and international spread of
the 2019-nCoV outbreak originating in Wuhan, China: a
modeling study. Lancet; 395: 689-97.

Rui-Zing M, Jiming L, William K. W, Cheung, Xiang W.
(2017). Stochastic modelling of infectious diseases for
heterogeneous populations. Infectious diseases of poverty. 5
(107): 1-11.

Gurav YK, Pawar SD, Chadha MS, Potdar VA, Deshpande AS,
Koratkar (2010). Pandemic influenza A (HIN1) 2009 outbreak
in a residential school in Panchgani, Maharashtra, India.
Indian J Med Res; 132: 67-71.

Sattenspeiel L, Herring DA (2003).. Simulating the effects of
quarantine on the spread of 1918 flu in central Canada. Bull
Math Biol; 65: 1-26.

Shil P, Bidaye S, Vidyasagar PB (2008). Analyzing the effects
of surface distribution of pores in cell electroporation for a
cell membrane containing cholesterol. J Phys D: Appl Phys;
41: 551-557.

Deguen S, Thomas G, Chau NP (2000). Estimation of the
contact rate in a seasonal SEIR model: application to
chickenpox incidence in France. Statist. Med.; 19: 1207-1216.

Wang J, McMichael AJ, Meng B, Becker NG, Han W, Glass K,
Wu J, Liu X, Liu J, Li X, Zheng X (2006). Spatial dynamics
of an epidemic of severe acute respiratory syndrome in an

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

urban area. Bull. World Health Organization; 84 (12): 965—
968.

Kongnuy R, Pongsumpun P 2011. Mathematical modeling for
Dengue transmission with theeffect of season. Int. J
Biological Life Sci; 7 (3): 143-147.

Constatenos S., Cle A, Lucia R. Christos G, Elefterios M.
(2015). Modeling the 2014 Ebola Virus Epidemic — Agent-
Based Simulations, Temporal Analysis and Future Predictions
for Liberia and Sierra Leone. PLoS Currents. 2015: 1-18.

Ruan S, Xiao D, Beier JC (2008). On the Delayed Ross—
Macdonald Model for MalariaTransmission. Bull Math Biol.
70 (4): 1098-1114.

Massad E, Coutinho FAB, Burattini M. N, Amaku M (2010).
Estimation of R from the initial phase of an 0 outbreak of a
vector borne infection. E. Tropical Medicine Intl Health.; 15
(1): 120-126.

Adomian G, (1988). A Review of the Decomposition Method
in Applied Mathematics, J. Math. Anal. Appl. 135: 501-544.

Somali S. and Gokmen G. (2007). Adomian Decomposition
Method for Non-Linear Sturm-Liouville Problems, Surveys in
Mathematics and its Applications, Vol. 2, 11-20.

Adomian G., Adomian G. E. (1984). A global method for
solution of complex systems, Math. Model. 5521-568.

Adomian G. (1994). Solving Frontier Problems of Physics:
The DecompositionMethod, Kluwer Academic Publishers,
Dordecht.

Wazwa A. M. (2000). A new algorithm for calculating
Adomian polynomials for non-linear Operators, Appl. Math.
Comput. 111: 53-69.



